Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
This is a DP problem.
In Order, n = 0, result = 1:
int numTrees(int n) {
int table[n+1];
memset(table, 0, sizeof(int)*(n+1));
for(int i = 0; i <= n; ++i){
if(i < 2) table[i] = 1;
else{
for(int j = 0; j < i; ++j){
table[i] += table[j]*table[i-j-1];
}
}
}
return table[n];
}
No comments:
Post a Comment