Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
This is a DP problem.
In Order, n = 0, result = 1:
int numTrees(int n) { int table[n+1]; memset(table, 0, sizeof(int)*(n+1)); for(int i = 0; i <= n; ++i){ if(i < 2) table[i] = 1; else{ for(int j = 0; j < i; ++j){ table[i] += table[j]*table[i-j-1]; } } } return table[n]; }
No comments:
Post a Comment